5v^2+20v+10=4v

Simple and best practice solution for 5v^2+20v+10=4v equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5v^2+20v+10=4v equation:



5v^2+20v+10=4v
We move all terms to the left:
5v^2+20v+10-(4v)=0
We add all the numbers together, and all the variables
5v^2+16v+10=0
a = 5; b = 16; c = +10;
Δ = b2-4ac
Δ = 162-4·5·10
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{14}}{2*5}=\frac{-16-2\sqrt{14}}{10} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{14}}{2*5}=\frac{-16+2\sqrt{14}}{10} $

See similar equations:

| 17.42.1x+0.6=17.4 | | 4x–7/4x+14=7/4(x+8)+1/2x | | 2(2x+10)=2x-7 | | 112=8(-6+4p) | | 2x+32+4x+134=180 | | 3c-4=104 | | -6(x+2)-8=1x-10-7x-10 | | 4x–74x+14=74(x+8)+12x | | 40+2x+62=55+147 | | 5x^2=8x+1 | | 2v+7-5v=-27 | | 25x+7(3.57-3.5)=175 | | 3x−33=90 | | -2+7(6+6n)=208 | | −8−8x=-24−24 | | 12-3/7x=-21 | | 2-5x=5x+122 | | 85-x=90 | | -3x+21=6(x+2) | | 2y−3=y+5 | | 8.5/2=a/8 | | (2x-2)+43=180 | | 3x-6=12x=6 | | 98-2x=90 | | 6x+8.5x=391 | | (2x-2)+67=180 | | -20=-15n | | 207=-4(6n-1)-5n | | 85-x=180 | | 9(x+18)=45 | | 6-4x=-2x^2-2 | | 7+6(3x-2)=-149 |

Equations solver categories